Tools and Technologies for Forecasting Hydrological Hazards

Strengthening Regional Cooperation to Support Forecasting with Multi-Hazard Approach in RA IV

Robert Jubach

Hydrologic Research Center A Non-profit, Public Benefit Corporation http://www.hrc-lab.org

Large River Floods and Flash Floods

Large River Floods

- Catchment response affords long lead times
- Affords time for coordination of flood response and damage mitigation
- Entire hydrographs can be produced w/low uncertainty with good quality data
- Local information less valuable
- A hydrologic forecasting problem primarily

Flash Floods

- Catchment response is very fast and allows very short lead times (< 6-12hrs)
- Coordination of forecasting and response is challenging over short times
- Prediction of occurrence is of interest

- Local information is very valuable
- A truly hydro-meteorological forecasting problem

Flash Floods

Flash Floods

Flash Floods

- World Meteorological Organization A flood of short duration with a relatively high peak discharge
- American Meteorological Society A flood that rises and falls quite rapidly with little or no advance warning, usually as the result of intense rainfall over a relatively small area
- Response time is 6 hours or less

Flash Floods

Flash Flood Approaches

- Site Specific costly to implement, limited basin coverage, data intensive
- Distributed Modeling costly to implement, limited basin coverage, data intensive
- Flash Flood Guidance areal approaches

- Flash Flood Guidance –
 volume of rainfall of a given
 duration (1-6 hours) over a
 given small catchment that is
 just enough to cause bank full
 flow at the outlet
- Flash Flood Threat rainfall of a given duration in excess of the corresponding Flash Flood Guidance value (past or "forecast" rainfall; measure of uncertainty)

Combination of the two provides critical information for Flash Flood Alerts and Warnings

Flash Flood Guidance System

A TOOL PROVIDING INDICES OF FLASH FLOOD POTENTIAL

FLASH FLOOD GUIDANCE

FLASH FLOOD THREAT

Flash Flood Guidance System

Bank Full Flow

 Bank full flow is a conservative measure of flooding as it may not be associated with significant flood damage.

- Threshold runoff of the desired duration and over the desired drainage basin – Expresses ability of land-surface slopes and small streams to convey and store rainwater just prior to flooding occurrence. Produces overland flow that results in direct runoff (saturated soils). Basin runoff characteristics.
- Soil water deficit at the current time Expresses the ability of the surface soils to store and convey rainwater to streams in a continuous manner for a given drainage basin.
- Flash flooding begins when both the surface and subsurface elements lead to bank full conditions at the stream outlet of a given drainage basin.

- A soil moisture model (e.g., Sacramento Soil Moisture Accounting Model) is applied to each delineated flash flood basin to determine soil water deficit
- The moisture states of the soil as calculated by the soil model are used in the calculation of flash flood guidance
- The model parameter estimation uses spatial analyses of various available Geographical Information System data layers such as <u>soil</u> <u>properties</u>, <u>land use-land cover</u>, and <u>terrain information</u> (slope, <u>etc.</u>)
 - A priori parameterization approach

Flash Flood Guidance

36 – HOUR FORECAST V. FIELD REPORTS

36 – HOUR FORECAST V. PHOTOS AND TWITTER

March 2011 12

Large River Floods

- Need for advanced hydrologic models for river (flood) and water resources forecasting to complement traditional river forecasting
- Advances in hydrologic science are toward models that are more accurate and robust
- These advances have focused on modeling on smaller scales

It's a Matter of Scale – Lumped v. Distributed

- Lumped approach historical precedence
 - Uses assumptions of uniform conditions (one unit), which distort the hydrologic characteristics of the basin
 - Model parameters are spatially averaged over the basin
 - Uniform terrain, soils, vegetation, land-use
 - Uniform model forcing (temporal and spatial distribution of precipitation)

- Distributed modeling looks to address the shortcomings of the lumped models
 - Represents hydrologic processes in more spatial detail
 - Become more of an option with availability of higher resolution data sets (terrain, soils, land use)
 - Increase in computer capabilities

These allow for calculations on smaller scales

- Distributed Models
 - Use model parameters related to spatial variability of the physical characteristics of the basin (terrain, soils, land cover)
 - Incorporate spatial variability of precipitation accounting for:
 - Orographic precipitation
 - Rain v. snow
 - Can obtain hydrographs at ungauged locations in the basin

- Distributed models howevers
 - Smaller scales mean greater uncertainty

Combined uncertainty for model parameters and precipitation

- Distributed Model howevers
 - Do they really provide more accurate flow simulations
 - How good are the interior hydrographs
 - How well do they work in an operational setting
 - Forecasters provide runtime modifications and updates
 - Computer requirements to run in real-time
 - What are precipitation input requirements
 - Studies DMIP by U.S. NWS

Water Resources Management

March 2011 21

March 2011 22